LESSON
 16
 ACTIVITY

Polar Bears and Penguins

Electronegativity and Polarity

Purpose

Name \qquad
Date \qquad

To understand polarity and bonding between atoms.

Instructions

Read the comic strip "The Bare Essentials of Polarity," and use it to answer these questions.
I. How does the comic strip define a polar molecule?
2. Define electronegativity as you understand it, after reading the first two pages of the comic strip.
3. What is the artist trying to represent by two polar bears arm wrestling or two penguins arm wrestling?
4. What three types of bonds are represented on the third page of the comic strip? What happens to the bonding electrons in each type of bond?
5. Explain why there are four scoops of ice cream in the illustration of O_{2} on the third page.
6. What do the six scoops of ice cream represent in the illustration of N_{2} on the fourth page?
7. Describe what you think is happening to the penguin in the CO_{2} molecule in the picture on the fourth page.
8. Name three things that the picture of CO_{2} on the fourth page illustrates about the molecule.
9. Describe what you think is happening to the penguins in the illustration of $\mathrm{H}_{2} \mathrm{O}$ on the fourth page.
10. What does the crossed arrow represent in the comic strip?

II. What are two of the definitions of dipole given in the comic strip?
12. Making Sense What does electronegativity have to do with polarity?
13. If You Finish Early Using polar bears and penguins, create an illustration showing a hydrogen sulfide molecule, $\mathrm{H}_{2} \mathrm{~S}$. (Hint: You might want to start with a Lewis dot structure.)

You don't have to go to the ends of the earth to find polar molecules. They're all over the place. A polar molecule is just a molecule with a difference in electrical charge between two ends.

Polarity in molecules is caused by differences in electronegativity between atoms.
Electronegativity describes the ability of an atom to attract bonding electrons toward itself.

Electronegativity values tend to increase as you move "northeast" on the periodic table, and decrease as you move "southwest."

The noble gases are often not assigned electronegativity values. They rarely bond to other atoms.

When two atoms with different electronegativity values bond, the bonding electrons spend more time around the more electronegative atom, creating a PARTIAL NEGATIVE CHARGE on that atom. The other atom then has a PARTIAL POSITIVE CHARGE, and the bond is polar.

When atoms with equal electronegativity values bond, they form nonpolar bonds. The electron-attracting strength of each atom is the same.

However, if the electronegativities of two bonded atoms are different,

Because the elements have such varying electronegativities and can bond in many different combinations, there is really a continuum of polarity in bonding. We can break the continuum down into three categories.

An N_{2} molecule isn't a dipole and it doesn't have any dipoles.

Bond: Nonpolar Molecule: Nonpolar
CO_{2} has two dipoles but the CO_{2} molecule itself is not a dipole. Its polar bonds balance each other out and make the molecule nonpolar overall.

$\mathrm{H}_{2} \mathrm{O}$ has two dipoles. Because of its bent shape, it
also has a dipole in the sense of an overall polarity. also has a dipole in the sense of an overall polarity.

The polarity of molecules can affect many of their other properties, such as their solubility, their boiling and metting points, and their odor.

Why are we in this comic strip?

Penguins and polar bears don't even live at the same poles!

