pHooey!

Name:		
Period:	Date:	

Purpose: You will explore the relationship between pH, pOH, [H+], and [OH-].

Part I: Discovering the math behind pH

Directions: The following data table contains some of the data you collected in the first lesson. Additional information, the concentration of H+, has been included. Complete the following table:

Substance	Acidic or Basic?	pН	[H ⁺] (in decimal)	[H+] (in scientific notation)
1 M HCl				
Stomach acid (0.1 M HCl)	Acidic		0.1 M	$1.0 \times 10^{-1} \text{ M}$
Clear Soda		3	0.001 M	
Rain Water	Acidic			$1.0 \times 10^{-6} \mathrm{M}$
Distilled Water		7	0.0000001M	
Alcohol	Neutral			
Salt Water			0.0000001 M	
Washing Soda	Basic	8		$1.0 \times 10^{-8} \mathrm{M}$
Ammonia			0.0000000001 M	$1.0 \times 10^{-10} \mathrm{M}$
Drain Cleaner (0.1 M NaOH)		13		
1 M NaOH				$1.0 \times 10^{-14} \text{ M}$

Answer the following questions:

- 1. If you know the concentration of [H+] of a solution in decimal form, explain how you can figure out its pH.
- 2. If you know the concentration of [H+] of a solution in scientific notation, explain how you can determine its pH.
- 3. As the value of the pH increases, what happens to the concentration of H+?
- 4. As the value of the pH decreases, what happens to the concentration of H+?
- 5. Solution A has a pH of 5. Solution B has a pH of 9.
 - a) What is the [H+] of both solutions?
 - b) Identify the solutions as acidic or basic.
 - c) Which solution has the greatest concentration of H+? How many times greater is the concentration?

Part II: Looking at OH-

Procedure: Imagine the following table contains results of a series of dilutions of HCl and NaOH. Additional information about the solutions (the pOH) is included. Complete the table.

	Well	pН	[H+]	[OH-]	рОН
HCl 🗸	— A	1	$1.0 \times 10^{-1} \text{ M}$		13
	В	2	$1.0 \times 10^{-2} \text{ M}$	$1.0 \times 10^{-12} \text{ M}$	12
	С	3	$1.0 \times 10^{-3} \text{ M}$		
	D	4	$1.0 \times 10^{-4} \text{ M}$	$1.0 \times 10^{-10} \mathrm{M}$	10
	Е	5	$1.0 \times 10^{-5} \mathrm{M}$		
	F	6	$1.0 \times 10^{-6} \mathrm{M}$		
	G	7	$1.0 \times 10^{-7} \mathrm{M}$		
	Н	7	$1.0 \times 10^{-7} \text{ M}$	$1.0 \times 10^{-7} \text{ M}$	7
	_ I	7	$1.0 \times 10^{-7} \text{ M}$		7
NaOH _	R	7	$1.0 \times 10^{-7} \text{ M}$	$1.0 \times 10^{-7} \text{ M}$	7
	Q	7	$1.0 \times 10^{-7} \mathrm{M}$		7
	Р	7	$1.0 \times 10^{-7} \mathrm{M}$		
	О	8	$1.0 \times 10^{-8} \text{ M}$		
	N	9	$1.0 \times 10^{-9} \mathrm{M}$	$1.0 \times 10^{-5} \text{ M}$	5
	M	10	1.0 x10-10 M		
	L	11	$1.0 \times 10^{-11} \text{ M}$		3
	K	12	$1.0 \times 10^{-12} \mathrm{M}$	1.0 × 10-2 M	
	J	13	$1.0 \times 10^{-13} \text{ M}$	1.0 × 10-1 M	1

Answer the following questions:

- 1. What does [OH-] stand for?
- 2. What can you say about the concentration of OH- in solutions with high acidity?
- 3. How is the value of the pH related to the value of the pOH for each concentration?
- 4. If you know the value of the pH, how can you determine the value of the pOH for that same solution?
- 5. If you know the value of the pOH for a solution, how can you figure out the value of the pH for that solution?

Making Sense:

How are pH and pOH related to each other mathematically?

If you finish early:

How are [H+] and [OH-] related to each other mathematically?